Overview Associate Lab Director's Perspective

DOE-NP annual S&T Review of RHIC

S. Aronson

July 6-8, 2005

Contents

- RHIC overview
- Accomplishments of the RHIC program
- The Roles of BNL
- Core competencies at BNL
- Priorities, vision, outlook for the RHIC program

Structure of this Review

Wednesday Morning

- Laboratory perspectives, vision
- Collaboration reports, outlook

Wednesday Afternoon

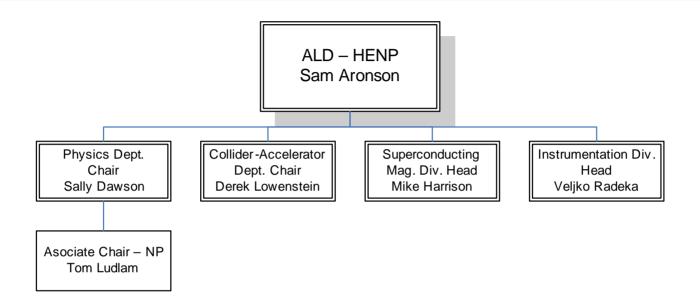
- Accelerator performance, upgrades
- Detector plans, upgrades

Thursday Morning Parallel Sessions

- A: Accelerator R&D
- B: RHIC Computing Facility Operations
- C: BNL Scientific Program

Thursday Afternoon

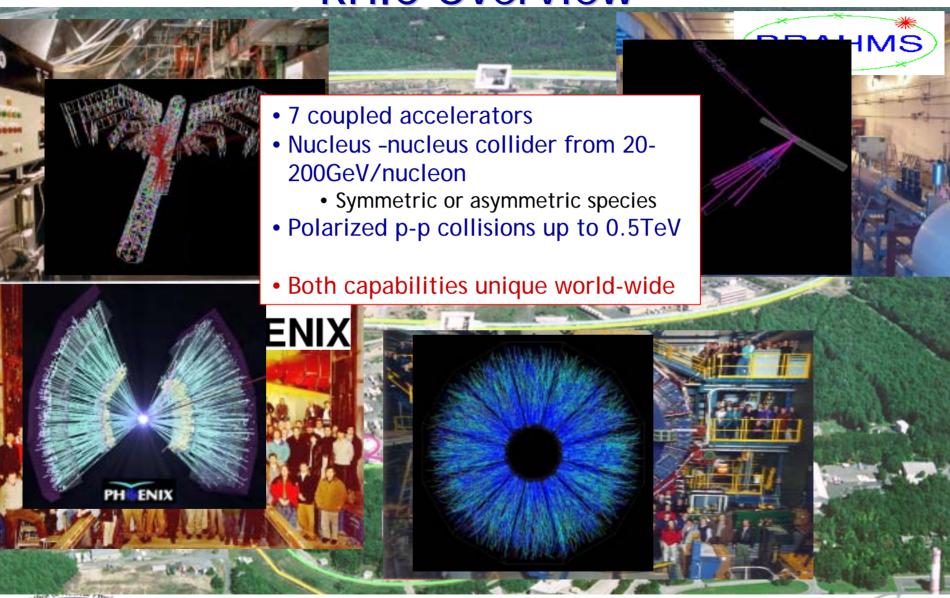
• Theory programs, Users' perspective


The structure of the review as I see it

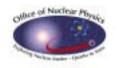
- Hybrid: S&T Review of the RHIC Program
 ⊗ Review of BNL performance in Research and Operations
- Somewhat entangled, but it mirrors the typical problem of a host laboratory
 - Balancing research and "customer" support
- This review will be most useful to me if it evaluates how well we achieve this balance



HENP Overview


HENP: 2 Departments, 2 Divisions, ~660 FTEs

- Some NP-funded activity in Chemistry Dept.
 - Also National Nuclear Data Center in Energy Sci & Tech Dept.
- Total BNL NP Budget Authority ~\$150M/yr



RHIC Overview

RHIC Program Accomplishments

- Five spectacularly successful annual runs
 - Physics discoveries: a new state of matter
 - Scores of refereed papers, thousands of citations
 - Machine performance meeting and exceeding goals
- Recently published peer-reviewed retrospectives on the first 3 years of heavy ion physics
 - Nuclear Physics A757 (in print 8 August 2005)
 - Online http://www.sciencedirect.com/science/journal/03759474
 - Where are we in the discovery phase?
- Large Au+Au sample (Run 4) being analyzed
- Large Cu+Cu and polarized p+p samples (Run 5) in hand

The Roles of BNL

Research, Operations, Planning

Research

- HI research reviewed in 2004 against other labs
 - · Very productive, leading groups in their collaborations
 - Fully integrated with experimental operations
 - Parallel Session C tomorrow
- Nuclear Theory and Spin groups to be reviewed in 2005, 2006 against other labs
 - Synergy with RIKEN BNL Research Center (RBRC): one of two major positive impacts of participation in RHIC from Japan (also US/Japan program via KEK)

Forefront experimental and theoretical research at BNL is vital to outstanding operations at RHIC

The Roles of BNL

Operations

- RHIC has met and mostly exceeded expectations
 - Integrated luminosity
 - Proton polarization
 - Energy scans
 - Development
 - pp @ $\sqrt{s_{pp}}$ = 410 GeV & 30% polarization in a few days!
- And has plans for operations improvement, e.g.
 - EBIS
 - NYS: Empire State Development Corp funds are expected to be available for infrastructure enhancement for EBIS

2002 2004 2005 5-4 2005 5-4	2005 DD2	DOOR DAIL 2	2000	2000 D	2000 PMI
Staffing decrement by year at \$180K/FTE-yr (\$M) =		0.0	0.0	4.0	4.0
RHIC Fringe Increments from FY05 by year (\$M) =		1.3	1.3	1.3	1.3
RHIC Base Power from FY05 by year (\$M)=		0.0	0.1	0.1	0.1
Space Chg. (MII) Increments from FY05 PB by year (\$M) =		0.7	2.0	2.0	2.0
Power Rate increase factor after FY05	1.190				
RHIC M&S (\$M)/week =	0.200	0.200	0.200	0.200	0.200
RHIC Beam Power Rate (\$M)/week =	0.190	0.190	0.226	0.226	0.226
RHIC Facility Power Rate (\$M)/week =	0.046	0.046	0.055	0.055	0.055
FY04 - FY05 Inflation Factor =	1.030	1.030	1.030	1.030	1.030

Scier

Version: June 29, 2005 S. Aronson, G. Rai New Power Rate

Pla par dai

Bal

•

•

Pla

		Staffing decrer	ment by year at	\$180K/FTE-yr	(\$M) =		0.0	0.0	4.0	4.0	
	Fiscal Year	2003 (FY03 \$M)	2004 (FY04 \$M)	2005 Est (FY04 \$M)	2005 Est (FY05 \$M)	2005 PB ² (FY05 \$M)	2005 BNL ² (FY05 \$M)	2006 (FY05 \$M)	2006 Pres (FY05 \$M)	2006 BNL (FY05 \$M)	ı
	Cryo. Weeks/Yr	27	27	27	27	32	32	32	12	12	
	PHENIX Ops. Costs M&S	6.0	5.9	5.9	6.0	4.1 1.3	4.1 1.3	4.1 1.3	3.8 0.5	3.8 0.5	
	R&D Ops. Equip.	0.1 0.5	0.5 0.9	1.0 0.9	1.0 0.9	1.0	1.0	0.7	0.5	0.5	
	Res. Equip.	0.0	0.0	2.5 VTXb	2.6 VTXb	0.0 VTXb	0.0 VTXb	1.4 VTXb	1.4 VTXb	1.4 VTXb	
1	STAR Ops. Costs	5.9	5.8	5.8	5.9	4.2	4.2	4.2	4.0	4.0	
	M&S R&D	0.1	0.5	1.0	1.0	1.3 1.0	1.3 1.0	1.3 0.8	0.5 0.5	0.5 0.5	
	Ops. Equip. Res. Equip.	0.5 3.0	1.0 2.0	1.0 2.0	1.0 2.1	0.7 0.0	0.7 0.0	1.5	1.5	1.5	
	PHOBOS	BEMC	BEMC	TOF	TOF	TOF	TOF	TOF/MVTX	TOF/MVTX	TOF/MVTX	
	Ops. Costs M&S	0.9	0.8	0.8	0.8	0.6 0.3 0.1	0.6 0.3 0.1	0.6 0.3	0.3 0.1	0.5 0.1	
С	Ops. Equip. BRAHMS	0.0	0.2	0.2	0.2	0.1	0.1				
	Ops. Costs M&S	0.8	0.7	0.7	0.7	0.4 0.3	0.4 0.3	0.4 0.3	0.2 0.1	0.3 0.1	
	Ops. Equip. Summed Exps Ops. Eq.	0.0	0.1	0.1	0.1	0.0	0.0	2.2	2.2	2.2	
	RCF Ops. Costs	5.2	5.3	5.6	5.8	5.8	5.8	5.8	5.8	5.8	
F	Ops. Equip. C-AD RHIC OPS	2.0	2.0	3.4	3.5	2.5	2.5	2.0	2.0	2.0	,
_	Ops. Costs Base Power	90.3	90.7	90.9	93.6	76.2 3.8	78.2 3.8	79.5 3.8	76.2 3.8	76.2 3.8	•
E	Incr. Power Base M&S					6.1 5.0	6.1 5.0	7.2 5.0	2.7 5.0	2.7 5.0	
<u></u>	Incr. M&S Total RHIC OPS R&D	0.9	2.0	2.0	2.1	6.4 97.5 2.0	6.4 99.5 2.0	6.4 102.0 2.0	2.4 90.1 1.9	2.4 90.1 1.9	
_	Ops. Equip./AIP Res. Equip. (EBIS) ³	4.4	3.9	3.8 2.5	3.9 2.6	4.3 0.0	4.3 0.0	4.3 2.6	4.3 2.6	4.3 2.6	ī
	Users/CAP Accel. + Expt Ops	0.9	0.9	0.9	0.9	0.9	118.7	121.2	0.9	106.6	k
1	eCooling R&D Detector R&D					2.0 2.0	2.0 2.0	2.0 1.5	1.9 1.0	1,9 1,0	
	Total Cost (FY05 Dollars) Total Cost with Inflation					120.7	122.7	124.7 128.1	109.0 112.0	109.5 112.6	
	Total Budget Difference						121.6	120.4 -7.7	0.1	112:1 -0:5	
	PHOBOS Terminated (Reduction Factor) BRAHMS Terminated (Reduction Factor)							1.0	0.5	1.0	
	STAR Terminated (Reduction Factor) PHENIX Terminated (Reduction Factor) Staff Reduction							1.0 1.0 0	1.0 1.0 -22	1.0 1.0 -22	
	People Cost Power					96.2	98.2	98.9	93.9	94.3	
	MSS Inflation costs (excl. power)					14.7	14.7	14.7 3.4	6.5 3.1	8.6 3.1	
	Reserve/Deficit Total					120.7	-1.1 121.6	-7.7 120.4	112.1	-0.5 112.1	

yr plans

Planning: Funding scenarios

Scenarios addressed for the NSAC subcommittee:

- FY 2005 program was 32 cryo-weeks and includes funding for R&D and upgrades
 - Good basis for an "optimized" long term program
- Constant effort funding starting with the President's budget in FY 2006 ⇒
 - Running across fiscal year boundaries (run every other year)
 - Limited investments in the future (upgrades slow down)
 - Reduced operations staff (40 FTEs in response to the 2006 President's budget)
 - Two small experiments cease operations
- Flat-flat funding at the FY 2006 President's budget level would effectively end the program in 5 years

The Roles of BNL

Scientific program planning

- Planning on all time scales with full community participation: daily, weekly meetings...annual, decadal and 20-yr plans
 - Beam Use Proposals → Program Advisory Committee
- Balancing of resources: running vs. investment
 - Running time (including split among energies & species);
 - Experimental support (including RCF & <u>Infrastructure</u>);
 - AIP; R&D
- Planning Spreadsheet co-maintained with DOE-ONP
- Other elements of the NP program
 - ME-LEGS, LE-neutrinos, <u>LHC-HI</u>, NNDC

Core Competencies at BNL

(Per "2005 Business Plan for BNL")

- Design, construct, and operate extraordinary facilities
- Advanced concepts of accelerators, detectors, magnets, and instrumentation
- Synchrotron radiation science and technology
- Imaging expertise
- Tera (peta)-scale computing

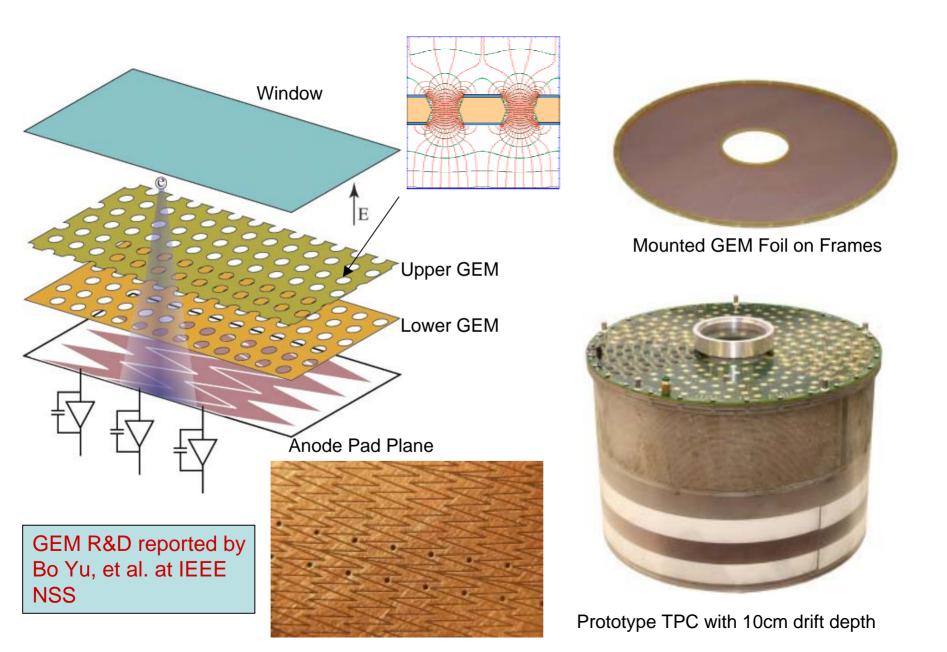
Core Competencies at BNL

(As relevant to the RHIC program)

- Design, construct, and operate extraordinary facilities
 RHIC/AGS, ATF (today, Session A)
- Advanced concepts of accelerators, detectors, magnets, and instrumentation
- Synchrotron rac SMD (Session A), Instrumentation* gy
- Imaging expertise
- Tera (peta)-scale computing

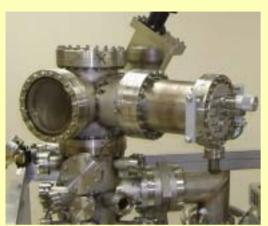
RCF (Session B, tomorrow), QCDOC

* Mentioned in this talk



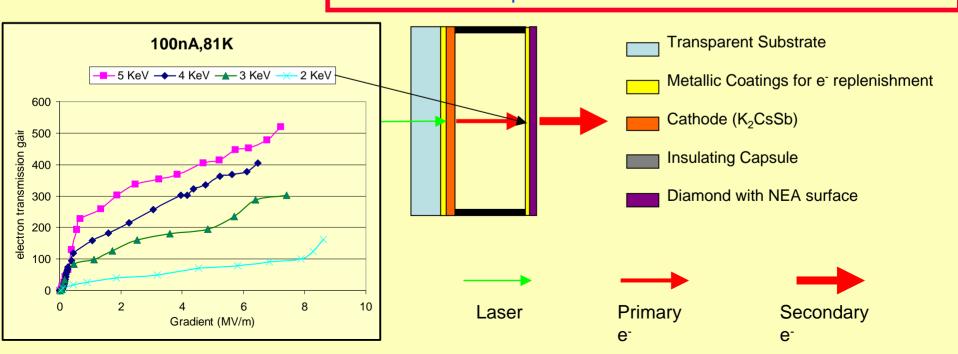
Instr. Div. Activities for RHIC

 $S = 1-2 \text{ years}; M = 3-5 \text{ years}; L = \ge 5 \text{ years}$


Silicon Detectors	Time Scale:
 Vertex detectors low mass Monolithic Active Pixel Sensors (MAPS) PHENIX (RIKEN, spin physics)) M-L
- single sided 2d strip detectors	S-M
 For all polarimeters (CNI and H-jet) at AGS/RHIC -thin window and large thickness detectors 	S-M
Gas Detectors	
 Small fine grained ("Micro") TPCs 	M-L
Gas Electron Multipliers	M-L
<u>Microelectronics</u>	
 Fine-grained detectors (TPCs, etc.) 	S-M-L
 FPGA & DSP technology 	S-M-L
RHIC Beam Monitoring • Digital Signal Processing - continuing development	
<u>Photocathodes</u>	
 Electron cooling at RHIC 	M
 e – RHIC, GaAs → polarized electrons 	L

Interpolating Pad Readout for Gas Electron Multiplier (GEM)

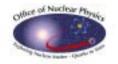
Electron Source Development for E-Cooler (with CAD)


Diamond Secondary Emitter

Diamond Test Chamber

Principle:

- Obtain 10mA primary current from a transmission photocathode
- Accelerate the primary electrons to a few keV
- Generate secondary electrons with a gain of 100+
- Transport electrons through diamond and into vacuum via specially prepared Negative Electron Affinity surface Entire system is a sealed capsule – avoid contamination of cavity by Cesium from cathode, and improve lifetime, reduce laser power

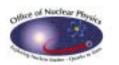

Priorities, Vision, Outlook

The #1 priority for Nuclear Physics at BNL, present and future, is *RHIC*

Present and near-term:

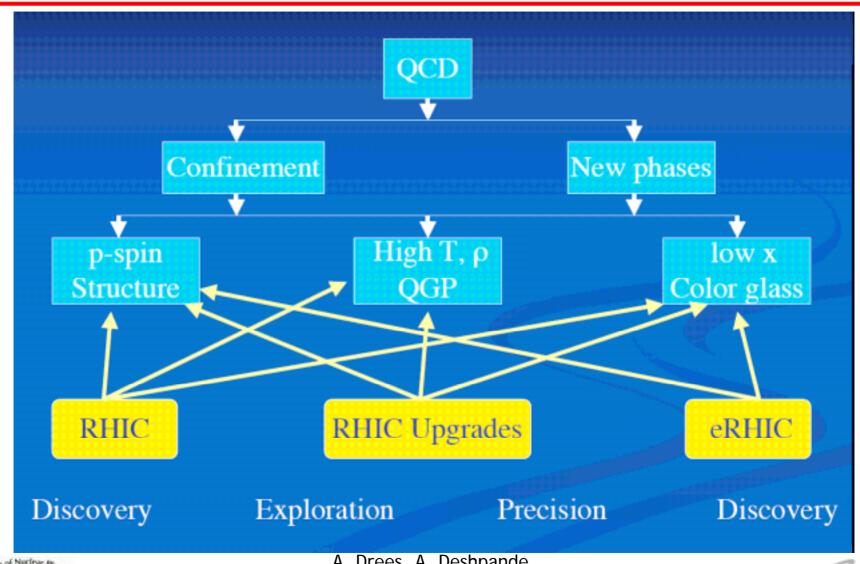
Exploit the scientific opportunities at RHIC

- Enormous gains in knowledge to be made (in A+A and Spin) starting NOW with near term upgrades and incremental improvements
 - Luminosity, polarization, DAQ, particle ID, η coverage
- Optimized operations
 - Running time vs. investment
- Research support
 - Experimental Research & ops support, detector R&D
 - Theory support including thermodynamics on the lattice



Priorities, Vision, Outlook

Mid- to long-term:


Evolve RHIC into a (the) QCD Laboratory

- Address the compelling questions in QCD revealed by the discoveries at RHIC
 - Involve the RHI, Spin and DIS communities and in articulating the future science of RHIC and eRHIC

QCD Laboratory

A. Drees, A. Deshpande 20

BROOKHAVEN
NATIONAL LABORATORY
Brookhaven Science Associates

RHIC Upgrade Science

QCD at High T and ρ	Is there a QCD Phase Transition to QGP; what are its properties? Thermalization: How do we evolve from a low-entropy initial state to a maximal entropy state on short time scales? Deconfinement: Do the degrees of freedom in the initial state have deconfined color charges? Chiral Symmetry: Is chiral symmetry restored at high T and r?
QCD at High E, Low x	What is the nature of gluonic matter in strongly interacting particles? Is this gluonic matter a CGC and is it the source of QGP? Is the low-x structure of nucleons in nuclei different from that of free nucleons?
QCD & Hadron Structure	How do gluons contribute to the proton spin? What are the u, d, s quark & antiquark polarizations in the proton? What orbital angular momentum is carried by the partons in a proton? What role does transverse spin play in QCD?

Priorities, Vision, Outlook

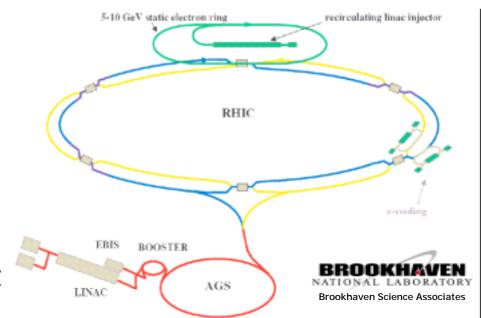
Mid- to long-term:

Evolve RHIC into a (the) QCD Laboratory

- Address the compelling questions in QCD revealed by the discoveries at RHIC
 - Involve the RHI, Spin and DIS communities and in articulating the future science of RHIC and eRHIC
- R&D/investments → the tools and techniques needed to address the questions
- Sell the case to the NP community
 - NSAC Long Range Plan of 200X

RHIC → RHIC II/eRHIC

- Critical technologies (principally electron cooling) enable both RHIC II and eRHIC
 - Higher integrated luminosity through longer luminosity lifetime


■ RHIC II

- An additional order of magnitude in average luminosity (beyond near term incremental increases)
- Detector enhancements

eRHIC

- Electron ring or linac
- New detector

The Challenge

- Budget constraints on all time scales
 - Operations big facilities have a big leverage factor on the last \$ that comes in the door for example:
 - FY06P: -8% → 60% cut in running, 10% RIF, loss of 2 smaller experiments, ~no R&D
 - As we told the Tribble subcommittee
 - Constant effort after FY06P → ~50% utilization of RHIC
 - Flat-flat funding after FY06P → "lights out" before 2010
 - Facilities big upgrade, evolution (or decommissioning!) look out of reach in present budget climate
- So: how to start down the (\$700M) path to QCD Lab?
 - The FIRST STEP: QCD community would have to unite around it
 - Need continued congressional support for ↑science funds

Issues

- Action Items from last year's S&T Review
 - BNL should prepare a document that articulates its research plan for the *RHIC spin physics* program. A copy should be submitted to DOE by January 31, 2005
 - Done
 - The Magnet Division should prepare a report that identifies the level of resources and costs needed to support RHIC operations. A copy should be submitted to DOE by January 31, 2005
 - Done but apparently not submitted (hand-off problem)
 - Available now (copies provided this morning)

Summary

- RHIC's success has made BNL a world center for
 - Heavy Ion Physics
 - Spin Physics
 - Nuclear Theory (high T, high ε, high E, low x)
 - Accelerator science
- A clear (non-trivial!) path leading to a QCD Lab
 - A + A, p + A, p + p, e + p, e + A
 - New detector capabilities, higher luminosity and polarization

This path has *discovery potential* every step of the way!

